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Germline mutations in PTPN11—the gene encoding the nonreceptor protein tyrosine phosphatase SHP-2—represent
a major cause of Noonan syndrome (NS), a developmental disorder characterized by short stature and facial
dysmorphism, as well as skeletal, hematologic, and congenital heart defects. Like many autosomal dominant dis-
orders, a significant percentage of NS cases appear to arise from de novo mutations. Here, we investigated the
parental origin of de novo PTPN11 lesions and explored the effect of paternal age in NS. By analyzing intronic
portions that flank the exonic PTPN11 lesions in 49 sporadic NS cases, we traced the parental origin of mutations
in 14 families. Our results showed that all mutations were inherited from the father, despite the fact that no
substitution affected a CpG dinucleotide. We also report that advanced paternal age was observed among cohorts
of sporadic NS cases with and without PTPN11 mutations and that a significant sex-ratio bias favoring transmission
to males was present in subjects with sporadic NS caused by PTPN11 mutations, as well as in families inheriting
the disorder.

Noonan syndrome (NS [MIM 163950]) is a develop-
mental disorder with clinical features that include facial
dysmorphism, proportionate short stature and growth
retardation, as well as skeletal, hematologic, and heart
defects (Noonan 1968; Allanson 1987). The prevalence
of NS is estimated to be 1 in 1,000–2,500 births (Nora
et al. 1974), which makes it the most common non-
chromosomal syndrome with cardiac involvement. NS
is genetically heterogeneous (Jamieson et al. 1994), and
∼50% of affected individuals are heterozygous for mis-
sense mutations in the PTPN11 gene (Tartaglia et al.
2001, 2002; Kosaki et al. 2002; Maheshwari et al. 2002;
Musante et al. 2003; Zenker et al. 2004). PTPN11 en-
codes SHP-2, a cytoplasmic SH2-domain–containing
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Istituto Superiore di Sanità, Dipartimento di Biologia Cellulare e
Neuroscienze, Viale Regina Elena, 299, 00161 Rome, Italy. E-mail:
mtartaglia@iss.it

� 2004 by The American Society of Human Genetics. All rights reserved.
0002-9297/2004/7503-0014$15.00

protein tyrosine phosphatase with relevant roles in signal
transduction and development. Molecular modeling, en-
ergetics-based structural analyses, and biochemical char-
acterization studies of SHP-2 mutants have documented
that these mutations destabilize the catalytically inactive
conformation of the protein, resulting in a gain of func-
tion (Tartaglia et al. 2001, 2003; Fragale et al. 2004).
Germline PTPN11 lesions have been identified as the
underlying cause of other developmental disorders
closely related to NS: Noonan-like/multiple giant cell
lesion syndrome (MIM 163955) (Tartaglia et al. 2002)
and LEOPARD syndrome (MIM 151100) (Digilio et al.
2002; Legius et al. 2002). A distinct class of somatic
mutations, appearing to have even higher gain-of-func-
tion levels, contributes to leukemogenesis (Tartaglia et
al. 2003, 2004; Loh et al. 2004). The identification of
these mutations explains the higher prevalence of mye-
loproliferative disorders and acute leukemia among chil-
dren with NS.

PTPN11 mutations appear to be more prevalent
among families segregating NS than among sporadic
cases (Tartaglia et al. 2002; Zenker et al. 2004). Like
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many autosomal dominant disorders, however, a signif-
icant percentage of NS cases arise from de novo muta-
tions. The genetic mechanisms underlying de novo gene
mutations have been contemplated for nearly a century
(Weinberg 1912). Epidemiological and statistical genetic
approaches established a correlation between advanced
parental age and several autosomal dominant disorders.
This led to the prevailing view, first proposed by Penrose,
that attributes this phenomenon to the increased op-
portunity for mitotic errors in spermatogonia, which cy-
cle continuously throughout the reproductive life of a
male, compared to that in oogonia, which do not (Pen-
rose 1955). More recently, the availability of molecular
approaches has permitted investigators to determine the
parental origin for de novo mutations. Studies of dis-
orders that arise from lesions affecting the fibroblast
growth-factor receptor (FGFR) gene family have dem-
onstrated the paternal germline origin of point muta-
tions (Moloney et al. 1996; Wilkin et al. 1998; Glaser
et al. 2000). Complete or high prevalence of paternally
derived gene mutations have also been documented for
Rett syndrome (Trappe et al. 2001), type I neurofibro-
matosis (Jadayel et al. 1990), multiple endocrine neo-
plasia 2A and 2B (Carlson et al. 1994; Schuffenecker et
al. 1997), and retinoblastoma (Zhu et al. 1989; Dryja
et al. 1997). On the other hand, de novo mutations of
both paternal and maternal origin have been dem-
onstrated in other autosomal dominant disorders: von
Hippel-Lindau syndrome, hemophilia B, type II neuro-
fibromatosis, and Treacher Collins syndrome (Richards
et al. 1995; Ketterling et al. 1999; Kluwe et al. 2000;
Splendore et al. 2003). These apparently conflicting find-
ings suggest that the ratio of paternal to maternal origin
of mutation is variable and depends on the gene and the
type of mutational event. Heterogeneity has also been
observed in the degree of the paternal-age effect asso-
ciated with the paternal origin of mutations (Jadayel et
al. 1990; Moloney et al. 1996; Dryja et al. 1997; Ket-
terling et al. 1999; Glaser et al. 2000; Splendore et al.
2003).

To explore this genetic phenomenon further, we in-
vestigated the parental origin of de novo PTPN11 mu-
tations in NS cases—using rare flanking polymorphisms
with which alleles were phased—and explored the effect
of parental age. A total of 49 families were included in
the study. Each family consisted of an affected individual
heterozygous for a PTPN11 mutation in exon 3 or 8
and both unaffected parents. All families were of Eu-
ropean origin and were part of two large NS cohorts
recently screened for PTPN11 mutations (Tartaglia et
al. 2002; M.T. and B.D.G., unpublished data). Consent
for genetic analyses was obtained from all families. For
the majority of families, the de novo occurrence of mu-
tation had been verified by analyzing genomic DNA of
both parents. In seven families, DNA was available from

only one parent, but phenotypic information on the un-
tested parent indicated that he or she was unam-
biguously clinically unaffected. Since nonpenetrance of
PTPN11 mutations has been documented to be ex-
tremely rare, and since parental mosaicism—gonadal or
somatic—has not been reported for NS to date, we as-
sumed the de novo occurrence of the mutation in these
families.

To trace the parental origin of mutations, portions of
the genomic region flanking the disease-causative lesions
(∼6,000 and ∼4,000 bases flanking exons 3 and 8, re-
spectively) were analyzed for the presence of polymor-
phic sites in affected individuals. Several short overlap-
ping stretches, located upstream and downstream of
those exons, were PCR amplified (primer pairs, anneal-
ing temperatures [Tann], and sizes of PCR products are
listed in table A1 [online only]), and unpurified PCR
products were denatured, slowly reannealed, and ana-
lyzed by denaturing high-performance liquid chro-
matography, with the use of the Wave Nucleic Acid
Fragment Analysis System (Transgenomic) at column
temperatures recommended by WaveMaker v. 4.1.31
(Transgenomic). Amplimers with abnormal denaturing
profiles were purified (with Microcon PCR [Millipore])
and were sequenced bidirectionally with the use of the
ABI BigDye Terminator Cycle Sequencing Kit v. 3.1(Ap-
plied Biosystems) and an ABI Prism 310 Genetic Ana-
lyzer (Applied Biosystems). We identified a heterozygous
condition for intronic polymorphisms in 15 individuals,
and genotyping of their parents (by restriction analysis
or by direct sequencing) indicated that 14 of the 15
families were informative. The amplification and cloning
(by the TA Cloning Kit [Invitrogen]) of genomic frag-
ments encompassing the exonic mutation and the in-
tronic polymorphic site allowed the determination of
haplotypes in affected individuals. As shown in table 1,
segregation analysis demonstrated the paternal germline
origin of the mutation in all cases (81%–100% CI).
Compared with the expected 1:1 ratio, this distribution
was significantly different (Fisher exact test, ).P ! .025
The identification of only two haplotypes among five or
more sequenced clones for each PCR product argued
against the presence of somatic mosaicism in affected
individuals. Parental sex assignment was confirmed in
all informative families by amelogenin gene (AMELX
[UniGene accession number Y040206] and AMELY
[UniGene accession number X14439]) amplification, as
described by Nakahori et al. (1991). The genotyping of
markers D2S406, D4S1625, D7S1817, D11S1392, and
D19S253 (Research Genetics) proved paternity in all
families.

To determine whether advanced paternal age was a
factor in the mutagenesis of NS, the ages of the British
fathers and their marital statuses were compared with
the population data (from the Office of Population Cen-
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Table 1

Parental Origin of De Novo PTPN11 Mutations

CASE MUTATIONa SNP/STR INTRON

SNP/STR GENOTYPEb

HAPLOTYPE ORIGINFather Mother Case

NS59 188ArG �790 A/C 2 A/A A/C A/C 188G, �790A Paternal
NS44 215CrG �105 (ATTT)7/8 4 (ATTT)7/7 (ATTT)7/8 (ATTT)7/8 215G, �105(ATTT)7 Paternal
NS4 218CrT �376 C/A 3 C/C A/C A/C 218T, �376C Paternal
NS3 922ArG �223 C/T 7 C/C C/T C/T 922G, �223C Paternal
NS55 922ArG �132 T/C 7 NA T/T C/T 922G, �132C Paternal
NS5 922ArG �21 C/T 7 C/C C/T C/T 922G, �21C Paternal
NS1 922ArG �21 C/T 7 C/T C/C C/T 922G, �21T Paternal
NS6 922ArG �21 C/T 7 C/C C/T C/T 922G, �21C Paternal
NS2 922ArG �21 C/T 7 C/C C/T C/T 922G, �21C Paternal
NS17 922ArG �21 C/T 7 NA C/C C/T 922G, �21T Paternal
NS28 922ArG �966 T/G 9 T/T NA T/G 922G, �966T Paternal
NS38 922ArG �1330 A/G 9 A/A A/G A/G 922G, �1330A Paternal
NS64 922ArG �1330 A/G 9 A/A G/G A/G 922G, �1330A Paternal
NS34 923ArG �21 C/T 7 C/C C/T C/T 923G, �21C Paternal

a No mutation occurred in the context of a CpG dinucleotide.
b NA p genomic DNA not available for molecular analyses.

suses and Surveys). Since the mean paternal age for the
British population varied over the period of the study
and consistently showed a skew toward younger ages
(i.e., failed a test of normality), statistical comparison of
the raw data would not have been valid. Instead, a log
transformation was performed with the population data
for each year, which produced a normal distribution.
The ages of the fathers were then expressed as Z scores.
One-tailed T tests were performed, with the significance
threshold of , to determine if the cohorts of fa-P ! .05
thers whose offspring had NS with and without PTPN11
mutations were older than the underlying population.
For those British men whose children had a PTPN11
mutation ( ), the mean Z score was 0.93 (n p 15 P !

). For the fathers of children with NS but without.001
a PTPN11 mutation ( ), the mean Z score wasn p 43
0.62 ( ). For comparison with other studies ofP ! .001
advanced paternal age, we noted that the average pa-
ternal age of the PTPN11-related cohort was 35.6 years,
which was 6.1 years older than the population average
for the children’s average year of birth (1980). For the
PTPN11-negative cohort, the average paternal age was
33.4 years, which was 4.0 years older than the popu-
lation average for the children’s average year of birth
(1981).

Finally, we examined the transmission of sporadic
PTPN11 mutations to look for a sex-ratio bias. Our
analysis was performed with the use of available pub-
lished (Tartaglia et al. 2001, 2002, 2003; Kosaki et al.
2002; Maheshwari et al. 2002; Kondoh et al. 2003; Mu-
sante et al. 2003) and unpublished (M.T. and B.D.G.,
data available upon request) records and indicated a
statistically significant sex bias in favor of males (66 vs.
31; , ). To consider whether that bias2x p 12.63 P ! .001
was also present among families inheriting NS with

PTPN11 mutations, we reviewed all published (Tartag-
lia et al. 2001, 2002; Kosaki et al. 2002; Maheshwari
et al. 2002; Schollen et al. 2003) and unpublished (M.T.
and B.D.G., data available upon request) records. With
the exclusion of founders, NS occurred in 37 males and
21 females ( , ). Examination of ma-2x p 4.41 P ! .05
ternal and paternal transmission did not suggest that the
distortion arose in a strongly preferential way from one
or the other (the affected mother transmitted to 27 af-
fected boys and 14 affected girls; the affected father
transmitted to 10 affected boys and 7 affected girls).
Among these families, there were 19 unaffected males
and 21 unaffected females born to affected parents.
There were also more transmitting mothers ( )n p 31
than fathers ( ), a significant difference ( 2n p 10 x p

, ) that can be ascribed to the reduced fer-10.76 P ! .01
tility of male individuals with NS (Elsawi et al. 1994).

The data presented here provide the first evidence for
a paternal origin of de novo PTPN11 mutations in NS
and for their association with advanced paternal age.
This finding confirms previous studies supporting a pre-
dominance of paternal origin of point mutations in the
majority of autosomal dominant diseases. It is clear that
this predominance does not reflect some genetic quirk
isolated to the FGFR genes, nor does it necessitate a
restricted molecular diversity of mutations, as observed
in some disorders (e.g., achondroplasia). The higher level
of DNA methylation in spermatagonia—compared with
that in oogonia—which would predict increased substi-
tutions at CpG dinucleotides, has been suggested as an
important contributing factor. This was bolstered by
studies of Apert syndrome, for which the FGFR2 mu-
tation that affects a CpG dinucleotide is twice as prev-
alent as the one that does not (Moloney et al. 1996).
On the basis of the 100–1,000-fold differences between
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FGFR3 mutation rates at CpG dinucleotides causing
achondroplasia and hypochondroplasia, it was under-
stood that the context of the CpG dinucleotide must
interact with other paternal factors (Bellus et al. 1995;
Wilkin et al. 1998). Here, we have documented that
exclusive paternal origin can occur without any substi-
tutions at CpG dinucleotides. Our finding is consistent
with data reported elsewhere by Glaser et al. (2000)
concerning Crouzon and Pfeiffer syndromes. Since NS
is believed to be relatively prevalent (Nora et al. 1974),
methylation status appears not to be central to the phe-
nomenon of paternal origin of sporadic mutations in
autosomal dominant disorders.

The phenomenon of paternal origin of sporadic mu-
tations remains perplexing. Penrose’s cycling theory, re-
markably insightful for its time, does not readily explain
why sporadic point mutations in the VHL gene that
cause von Hippel-Lindau syndrome arise with about
equal frequency in gametogenesis for either parent
(Richards et al. 1995), nor does it explain the dramatic
variability of paternal bias associated with transitions,
transversions, and small deletions and insertions (Ket-
terling et al. 1999). Similarly, it is unclear why NF1 point
mutations causing type I neurofibromatosis are almost
entirely paternal in origin but are not associated with
advanced paternal age (Jadayel et al. 1990). We consid-
ered the possibility that genes for which homologous
sequences exist in the human genome might be prone to
mutagenesis through gene conversion, a process that
might not depend on paternal inheritance or age. BLAT
searches using sequences for all of the autosomal dom-
inant disease genes for which parental origins have been
studied, failed to identify any genes with such highly
homologous sequences (see UCSC Genome Browser
Web site).

There are other problems with Penrose’s cycling the-
ory. First, Risch et al. statistically examined the patterns
of advanced paternal age (Risch et al. 1987). If mitotic
cycle number were the principal driving factor under-
lying the predominance of paternal origin, then preva-
lence of sporadic mutations ought to be linear with pa-
ternal age. They observed that this was not the case, the
available data being more consistent with an exponential
process. Second, recent work from D. Page’s group in-
dicates that the ratio of mutation rates for homologous
sequences on the X and Y chromosomes (that were phys-
ically distant from any gene and were not under selection
pressure) over the past 3–4 million years of hominid
evolution is only 1.7 (Bohossian et al. 2000). These data
support the notion that the global rate of nucleotide
substitutions in the human genome is higher in males
and may be attributable, at least in part, to the cycling
disparity noted by Penrose. That mechanism, however,
cannot explain the exponential process driving the ap-
pearance of new mutations for relatively prevalent au-

tosomal dominant disorders like NS. Consistent with
this, recent studies demonstrated that the increased prev-
alence of FGFR mutations in sperm from cohorts of men
of various ages is not sufficient to sustain the exponential
rise of sporadic achondroplasia and Apert syndrome
births associated with advanced paternal age (Tiemann-
Boege et al. 2002; Glaser et al. 2003). This suggests that
additional contributing mechanisms, such as selective
advantage of mutant spermatogonial cells, cell-specific
DNA-repair efficiency, and/or decreased apoptotic con-
trol with age, might also play a role (Glaser et al. 2003;
Goriely et al. 2003; Singh et al. 2003). Glaser and Jabs
raised the possibility that gain-of-function mutations in
FGFR genes might result in a selective advantage in
sperm motility and capacitation (Glaser and Jabs 2004).
It is interesting, therefore, to note the possibility that the
PTPN11 mutations in NS could have similar effects,
since SHP-2 is a positive regulator of signal transduction
downstream from the FGFRs.

We observed a distorted ratio in the sex of subjects
with sporadic NS and PTPN11 mutations. Sex-ratio dis-
tortion has also been observed in retinoblastoma and
multiple endocrine neoplasia type 2B, occuring more of-
ten in males and females, respectively (Carlson et al.
1994; Naumova and Sapienza 1994). Possible expla-
nations for our findings would include chance, patient-
selection bias, adverse effects on embryonic development
in a sex-specific manner (poorer survival for female em-
bryos, in this case), preferential fertilization by sperm
with a PTPN11 mutation and a Y chromosome, and
nonrandom segregation of chromosomes 12 and Y when
the former bears a PTPN11 mutation. Our data on spo-
radic NS were based on two independent cohorts, and
the sex ratio was distorted in both, providing some con-
firmation. As Sapienza noted in an editorial (Sapienza
1994), adverse effects on embryos should operate in the
transmission of mutant alleles in familial cases as well
as sporadic ones. Our observation that the sex-ratio dis-
tortion was also present in familial cases suggests that
chance and patient-selection bias are unlikely to be op-
erative. Since the distortion was present when the af-
fected allele was transmitted by the mother and was not
present among the unaffected siblings, preferential fer-
tilization and nonrandom chromosome assortment also
seem unlikely. Thus, we would favor sex-specific devel-
opmental effects as the explanation for the sex-ratio dis-
tortion in PTPN11-associated NS, because fetal lethality
has been documented in this disorder.
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